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The thermal conductivity of semicrystalline polymers, regarded as two-phase materials, is discussed 
in terms of the Maxwell model generalized to the case where the inclusions are thermally anisotropic. 
The predicted effect of orientation agrees well with the large anisotropy observed in oriented poly- 
mers. The conductivity of the crystallites normal to the chain axes has also been extracted using this 
model. A recently proposed model for composites which incorporates interracial boundary resistance 
has been applied to the low temperature data for poly(ethylene terephthalate), not only explaining 
the decrease of conductivity with crystallinity, but also allowing the effective crystallite shape and the 
boundary resistance to be determined. The latter is found to vary as T -2. 

INTRODUCTION boundary resistance may be neglected. There is evidence 
that, for draw ratios not too large (say up to 4), the conduc- 

Two interesting features of the thermal conductivity of semi- tivity of the amorphous phase remains approximately un- 
crystalline polymers have recently been observed 1-4. First, changed s'6, so we describe the amorphous phase by an iso- 
while the thermal conductivity increases with crystallinity tropic conductivity K a. The crystalline phase is, however, 
at high temperature, it exhibits the opposite trend 1 below intrinsically anisotropic and must be characterized by con- 
about 20K. Secondly, at high temperature, orientation has ductivities Kcu and Kc.t in directions parallel and perpendicu- 
a large effect which diminishes rapidly as the temperature is lar to the chain axis. Since the intrachain covalent bond is 
reduced 2-4. Physically, the high temperature behaviour can much stronger than the interchain Van der Waals interaction, 
be easily understood if we recognize the fact that the thor- conductivity along the chains is expected to be large, while 
mal conductivity of the crystallites along the chain direction that perpendicular to the chains should not differ substan- 
is much higher than the value in the perpendicular direction tially from the amorphous case, i.e. 
which, in turn, is comparable to the thermal conductivity 
of the amorphous region. On the other hand, the thermal = Kcn >> Kc ± 
resistance at low temperature is dominated by the boundary kn 1 k± = - -  ~ 1 (1) 
resistance at amorphous-crystalline interfaces, which gives Ka Ka 

rise to a reduction in thermal conductivity with increasing For an undrawn polymer, the distribution of c-axes is 
interface area (i.e. with crystallinity) and relative insensitivity random, but after drawing, the angle 0 between the c-axes 
to orientation, and the draw direction shifts to smaller values, this being 

On the basis of these ideas crude models have been pro- characterized by the orientation function/c given by: 
posed and found to give results in reasonable agreement with 
experiment ~-3. In the present study we consider a slightly 
more refined model which, among other predictions, will fc = ½[3(cos 20) - 1] 0 <~fc ~< 1 (2) 
explain the change of conductivity both along and normal 
to the orientation direction as a function of the degree of where < ) denotes the average over all crystallites. It is clear 
orientation. The orientation of the chain axis of the crystal- that the very large intrinsic anistropy of the crystalline phase, 
lities is normally characterized by an orientation function fc together with the possibility of orienting the c-axes close to 
which, for most polymers, has already been determined as a the draw direction, is responsible for the large anistropy 
function of draw (or extrusion) ratio from wide-angle X-ray observed. To have any chance of success, the model must 
diffraction, thus facilitating our analysis, treat these effects realistically. 

In the next two sections the model will be discussed in One might also expect the shape of the crystallites to be 
detail and then applied to a variety ofisotropic and oriented an important parameter. However, it is rather unclear what 
polymer samples. In the final section we will indicate the shape factor to assign to the crystallites. Although it is 
rote of interface boundary resistance and its effect on the generally agreed that the basic crystalline units are plate- 
low temperature behaviour, like lamellae with lateral dimensions much larger than thick- 

ness 7 there is also considerable evidence that the ]amellae 
THE MODEL are in turn composed of mosaic blocks of lateral dimensions 

100-300 A (which is comparable to their thickness), with 
Our model for semicrystalline polymers consists of axially boundaries defined by dislocations s-H. Moreover, the inter- 
symmetric crystallites embedded in an amorphous medium lamellar amorphous regions and the intermosaic block 
and occupying a volume fraction X. We first limit our dis- regions have been termed the amorphous state of the first 
cussion to high temperatures (T~> 70K) where the effect of and second kind, respectively ~, so a semicrystalline speci- 
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men is, strictly speaking, a three-phase composite. However, It is this field 17 which induces a dipole moment ff  on 
at high temperatures where boundary resistance is negligible each sphere. The calculation o f f f  is standard and the re- 
these two kinds of amorphous region can be treated as iden- suit may be expressed in terms of a polarizability tensor all: 
tical as a first approximation, so a semicrystalline polymer 
will be considered as a two-phase material with spherical Pi = '~i/Fi (6) 
crystalline inclusions. 

In the development of the model, it will be convenient where the polarizability tensor is diagonal in the S' frame: 
to use the dielectric analogue in order to be able to invoke 
familiar concepts such as polarizability and surface charge / ., . e' 1 ' 1 \ i 3 e x x - - I  3 x x -  3 e z z -  
densities. Thus the amorphous phase is taken as a medium or'//= d iag /a  , _ ,  a -7----7-~. ~, a , _ ~ (7) 
with unit dielectric constant (Di = Bile l) while each crystallite ~ exx + 2 exx + 2 e zz + 2 
is a sphere with a dielectric constant eil(Di = el/El). There 
are two reference frames to be considered: a frame S defined Here a is the radius of the sphere. 
by the draw direction, and (for each erystallite) a frame S' Now the displacement vector D is : 
defined by its c-axis. In the latter frame e'i/takes the diago- 
nal form: Di = Ei + 4nPi 

e~] = diag (e'xx, e'x~, e zz) = [6ij + 4~N~ai])] Fj 

The crucial question is the interaction of one sphere with = [6ij + 47rN~ij)] ZjkEk (8) 
another. The simplest approach is to treat this in an average 
manner. We focus attention on one sphere, which we take where N = 3 X/4rta 3 is the number of spheres per unit volume 
to be at the origin of the coordinate system, and construct and ( ) denotes average. This allows us to identify the 
around it a spherical cavity enclosing no other crystalline macroscopic dielectric constant gU as: 
sphere. The region outside the cavity will be treated macro- 
scopically as a medium with a dielectric tensor Fi/which elk = [~i] + 41rN(oti])] Zlk (9) 
corresponds to the dielectric constant of the composite as a 
whole and is in fact the object to be determined. In the Now oqi is related to ct~] by a coordinate rotation and it is 
frame S, ~//takes the diagonal form: easy to show that: 

ell = diag (exx, exx, ezz) (axx) = (Otyy) = ½(1 + (cos20))axx + %(~n20 )Ot'zz (10a) 

2 ' Imagine an average field/~ in the macroscopic medium (azz) = (sin20) e,'xx + (cos O)azz (10b) 
outside the cavity. The field ff inside the cavity will have an 
extra contribution from the surface cha~e a on the walls of Putting these together we find: 

the cavity arising from the polarization P: 
ezz - 1 = 3X (sin20) + ezz - 1 ezz + 2 

[ exx + 2 ' (c°s2O) ezz + 2 3 

- a  r3 ( 3 )  
(11) 

where a = - P .  ~ and n" = ?'/r. So: and analogously for the transverse directions. To go back 
to thermal conductivities, we simply transcribe according to 

t , . _ y  - -  o = -- niP i exx ~ k.L, ezz k~, exx ~ K±/Ka, ezz ~ KI/Ka and therefore 
obtain: 

1 

4rr n i ( D i - E i )  k_L--1 1 + (cos20) k# , -1  
- -  + V'~ sin20 ) 
K± + 2K a [ k± + 2 2 kn + 2 

1 
= - -~nni(ei / -  6i/)E/ (12a) 

_ [  ] Putting this into equation (3) we fred: Kn - Ka _ X k± - 1 (sin20) + (cos20) 

Fi = Zi/E ] Ku + 2Ka k.L + 2 kn + 

1 _ (12b) = [5i] + -~(eii - 5i])]e] ( 4 )  

The cavity field factor Zij is diagonal in the S frame: For complete orientation ((cos20) = 1), K.L(Kn), depends only 
o n  Kc. L (gcll) , as expected. On the other hand, in the absence 
of orientation, the isotropic conductivity K i can be obtained 

exx + 2 (Sa) by putting (cos20) = 1/3 in either equation (12a) and (12b), 
Zxx = Fx/E x = Fy/ey - 3 and is 

Zzz Fz/Ez egg+2 (5b) K i - K a  x [ 2 k . L - 1  I k u - a ]  = - - - -  + - - -  ( 1 3 )  
3 Ki + 2Ka k± + 2 3 kn + 2 
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2.6 well model 13. Indeed, in the special case where the crystal- 
line phase is isotropic (k# = k_L), our results reduce to the 
well-lmown Maxwell expression 13. There are of  course more 
sophisticated and accurate treatments of  the interaction 

2-4 among spheres in the isotropic case 14-'6, but in the present 
context there are so many other relevant factors - the intrin- 
sic anisotropy and orientation of  the crystallites, for example 

2.2 - that a detailed consideration of  the interaction does not 
appear to be worthwhile at this stage. 

2.0 COMPARISON WITH EXPERIMENTS 

~, Conductivity o f  isotropic polymers 
With the assumption of  (k//-  1)/(kn + 2) -~ 1 and known 

I-8 value of Ka, it follows from equation (13) that K i depends 
only on Kc±, Figures I and 2 show the fitting of  the experi- 
mental data for poly(ethylene terephthalate) (PET)Z and 
polyethylene (PE) ~7 to equation (13). It is clear that a 

I. 6 good fit is obtained. The resulting Kc± values for these two 
polymers, as well as that for polypropylene (PP), are shown 
against temperature in Figure 3. 

I.Z . . . .  It is clearly seen that Kci of  PE is much larger than those 
0 0.2 0.4 0-6 0.8 I.O for the other two polymers and follows approximately a T - I  

x 
Figure I The crystallinity dependence of the thermal conductivity 
of isotropic PET at 70K. O, data from ref 1 ; , calculated accor- 
ding to equation (13) 
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Figure 2 The crystalliniW dependence of the thermal conductivity I C 
of isotropic PE at 100 and 300K. 300K: data (e); theoretical ( ) ~ 
100K: data (A), theoretical ( . . . .  ). The curves are calculated D 
according to equation (13). Data from ref 17 

We have previously mentioned that on physical grounds O 1(90 ' 2C)O ' 3()O 
ku >> 1, so that (ke - 1 ) / (k /+  2) -~ 1;hence equations (12) rlK) 
and (13) are almost independent of the actual value of  kt. Figure 3 The temperature dependence of the thermal conductivity 
Thus i t  wil l  not be possible to determine the magnitude or of the crystallites normal to the chain axis for PE, PET and PP. 

For comparison we also show K a, which is the thermal conductivity 
temperature dependence of Kcu from experimental data. of amorphous PE obtained by extrapolation of the data for the 

From the above derivation i t  is seen that the average melt 37. Its value is typical of all amorphous polymers. A, PE; B, Ka; 
treatment of  other spheres closely parallels that o1 the Max- c, PET; D, PP 
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Tab/e I Comparison of the theoretically predicted thermal conductivity Ki, Ki, $ and Kip with the observed values K i (expt) for isotropic 
polymer samples 

Material K a h KR K I K i Ki, s Ki, p K i (expt) 

PET a 100K 1.8 3.6 3.9 2.0 2.22 2.39 2.63 2.2 
X -= 0.42 

ppa 100K 1.35 b 3.3 3.2 1.5 1.95 1.82 2.07 1.75 
X ~- 0.62 5.5 5.2 1.3 2.09 1.73 2.60 1.75 

ppa 100K 1.35 b 10.5 7.8 1.2 2.23 1.67 3.40 1.91 
X = 0.79 

pEc 323K 2.4 d 1.64 8.86 4.18 5.34 5.07 5.74 4.89 
X = 0.69 3.3 16.5 3.2 5.30 4.38 7.63 

4.03 23.4 2.9 5.36 4.10 9.73 
5.14 30.3 2.72 5.39 3.90 11.91 
9.26 40.6 2.3 5.08 3.35 15.07 

13.8 42.1 2.1 4.84 3.07 15.43 

PE e 100K 1.8 d 4.4 21 4.4 6.72 5.97 9.93 7.4 
X =  0.6 

PE f 100K 1.8 d 5.4 31.5 5.3 8.25 7.33 14.03 10 
X = 0.78 9.5 42 5.3 8.56 7.48 17.53 

13 52 5.3 8.76 7.56 20.87 

a Data from ref 3; b Ka is obtained from ref 17; c Data from ref 27; d Ka is obtained by extrapolation of the data for the melt given in ref 37; 
e Data from ref 2; f Data from ref 4 

dependence, which is characteristic of three-phonon Umklapp A test o f  the model 
scattering processes Is. Moreover, not only this dependence Without having to know the orientation function [c or the 
but also the magnitude are about the same as the conduct±- crystallinity X, our model gives a relation between the con- 
vity of molecular crystals such as benzene (C6H6) 19, which ductivities Kt and K± of the drawn polymer and the isotro- 
probably possesses a Van der Waals interaction of similar pic conductivity Ki before drawing. If the isotropic and 
strength. We also note that, while at 100K Kci is more than drawn samples have the same crystallinity this relation can 
three times larger than Ka, these two quantities have roughly be readily obtained from (12) and reads: 
the same values at room temperature as a result of the vastly 
different temperature dependence. The values of Kc± of the Ki - Ka 1 K~ - Ka 2 K± - K a 
other two polymers are even lower than Ka, and almost in- - - -  + (15) 
dependent of temperature within the accuracy of our analy- Ki + 2Ka 3 Kn + 2Ka 3 K j_ + 2K a 

sis. While these low values may arise from weaker inter- This can be used with the data on Kn and K± at each draw 
chain Van der Waals interaction, the only possible explanation ratio to predict Ki, the accuracy of this prediction then be- 
for the gentle temperature dependence seems to be phonon ing a parameter-free test of the model. 
scattering by defects in the crystallites. It is instructive to compare this with the aggregate model 

Eiermann 17 has performed similar analysis employing the 20-24 which also predicts 1(4 from a knowledge of KI and K±. 
Maxwell model. But since the Maxwell model applies only 
to two isotropic phases, he was forced to describe the cry- However, the aggregate model suffers from a number of draw- 

eff stalline phase with an effective isotropic conductivity K c , backs when applied to semicrystalline polymers. First, it 
which must be some average measure of the more physical considers the sample as a single phase which, especially for 
Kct and Kcl used in our analysis. In fact, by comparing the polymers with comparatively high crystallirtity, appears to 
Maxwell model: be unrealistic. Moreover, since the sample contains both 

crystalline and amorphous regions, it is not clear whether 
Kcef f _ Ka the orientation function in such one-phase models should be 

Ki - Ka _ X related to the crystalline orientation function fc or the amor- 
Ki + 2Ka ~c  f f  + 2Ka phous orientation function fa. Furthermore, one-phase 

models are also unsuitable for the discussion of crystallimty 
dependence and, in particular, the interplay between orien- 

with equation (13), it is seen that Eiermann's K eft is related tat±on and crystallinity. Another critical problem is that, in 
to our Kc~ and Kcx as: performing the average over the aggregate, there is no reason 

to prefer either averaging the resistivities (the series model) 
_ 1 Kcl - Ka or the conductivities (the parallel model). If we denote the Kc e l f -  K a 2 K c ± -  Ka + _  

Kc elf + 2K a 3 "Kc± + 2K a 3 Kct + 2Ka predicted value of K± by these two methods by Ki, s and Ki, p 
respectively, then: 

2 Kct - Ka * _ (14) Ki, 1 = K~ "1 * K~_ 1 (16) 
3 Kcz + 2Ka 3 

Because Kce and Kc± differ so much, their average as represen- = ltc" 2 Ki, p + -~Kl (17) 
ted by K~ff has no real physical significance. 
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5 Q~ = 2 + 1 + 1 2fc (20b) 

Since k± has already been determined from the isotropic 
4 data, there are no adjustable parameters in equation (19). The 

E predicted behaviour as a function offc is shown in Figures 
4 to 6, together with the experimental data. In each case, 
the value offc for a given draw ratio has been obtained from 

3 the literature 2s-31. For PET and PE, the samples used for X- 
ray determination offc were not the same as those for ther- 
mal measurements 3,27, thus causing an uncertainty in the 

o ~ value Offc, represented by horizontal error bars. For PP, 
-6 2 ~ ~ ~ o o the data point at ), = 10.5 (fc ~- 1) corresponds to a sample 
e " "  " "  ---- . . . .  whose crystallinity increases appreciably on extrusion to 
v-'- "-'- ---- ~ X = 0.79, while the other data points refer to X = 0.62; 

hence two theoretical curves have been drawn. 
I It is clear that our model is in fair agreement with experi- 

ment and certainly gives the right trends: Kn increases rapidly 
with fc, while K± shows a slight decrease. For PE, the experi- 
mental value of Kn show a sudden sharp rise at draw ratio 

0 0'.2 0'.4 0'6 0'-8 t.O larger than 4 (fc > 0.9), which we take to be an indication 
tc that effects other than crystalline orientation (as described 

i i ½ 5 o o  by fc) begin to be important. This is consistent with earlier 
x studies 4 which show that this further rise can be explained 

Figure 4 The thermal conductivity of extruded PET at 100K 
against the crystalline orientation function. Data from ref 3: 
O, K#; O, K±. The horizontal error bar is due to the uncertainty in 
fc as explained in the text. The theoretical curves for K U ( ) | 
and K± ( . . . .  ) are calculated according to equation (19) I~ 

In general one can only expect 1(4, s and Ki, p to bound the 14 
true Ki, so that the constraint is not at all stringent. It may 
be mentioned that the same problem besets the application 
of the aggregate model to the elastic moduli of oriented 
polymers 2s,26. 12 

In Table 1 we list the predicted values Ki, Ki, s and Ki, p A 
for PET, PP and PE. The experimental values are, in general, 

E within 10% of our predicted Ki, while the agreement with 
Ki s and K i p (especially the latter) is much worse. For PP, • IO 
the value of K± is only available 3 for extrusion ratio ~ = 10,5, -- 
but because of its weak dependence on ~,, the values for ~" 
other extrusion ratios can be obtained by interpolation. ~ 8 

The fact that 1(4, s agrees better with data than Ki, p fol- ~ ) 
lows naturally from our model, since normally K a < Ki, Kn, o 

Y K l, so if we expand equation (15) to the lowest non-trivial -O 
order in K a, it reduces to the 'series' expression e 6 

g/"l = 1 r - a  + 2K/"l (18) t- . 

4 

 on c  t ,un tono, onent.,o _ :_: 
The dependence of Kn and K± on the orientation para- i 

meter f c is predicted by equation (12), which for this 2 
purpose may be written as: ~ . ~ .  ~ . . . _  ~ _.~ 

1 + 2XQ±,8 
K±,U = K a "  (19) 0 0"2 0"4 0'.6 0 8  I0 

1 - XQ±,n tc 

where, assuming (kn - 1)/(kn + 2) -~ 1: x 
Figure 5 The thermal conductivity of extruded PP at 100K against 

1 ( 2 k l -  11 1 ( k ± - - ~ )  the crystalline orientation function. The legends are given in the 

Q± = 3 ~ k - ~ ]  + 1 - -3 1 k l  + fc captionD, X = 0.79t° Figure 4. A, X = 0.79; B, X = 0.62; C, X = 0.62; 
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50 this is borne out by the data. 
For PE, the anisotropy A = Ki/K.t has also been measured ~ 

as a function of draw ratio for two samples with vastly diffe- 
_ 40 o~ rent crystallinities (X = 0.45, 0.74), the result clearly demon- 

strafing the interplay between orientation and crystallinity 
(Figure 7). The most important feature, namely that the 

~E anisotropy A increases more rapidly with fc for larger crys- 
30 tallinities X, is ~dequately reproduced by our model, and 

quantitative agreement is satisfactory for • < 4, as shown 
~= by the theoretical curves. The discrepancy for larger k is 
~ due to the effect of tie molecules on Ku, as previously dis- 
8 20 cussed. The observed anisotropy has also been explained in 

I L - - /  terms of an aggregate model where the intrinsic anistropy of 
the basic units is assumed to be crystallinity-dependent ~. 
However, in view of the large difference in Ka and Kcn, our 

IO treatment seems more realistic. 

. . . . .  o LOW TEMPERATURE BEHAVIOUR 
I . . . . . . .  7- -7"%,  

0 0.2 0.4 0 6  0.8 1.0 
fc In addition to the effect of orientation, another prominent 

t 

i 2 3 4 5 oo feature is the decrease of conductivity with crystallinity X 
X at low temperatures. This is best brought out by the data on 

Figure 6 The thermal conductivity of oriented PE at 323K against PET, which have been measured I over a wide range o f  crys- 
the crystalline orientation function. The legends are given in the tal l init ies and down to 1.5K (Figure 8). I t  is evident that 
caption to Figure 4. Data from ref 27 boundary resistance between the crystall ine and amorphous 

15 phases plays the dominant role at such temperature. 
The maximal effect of boundary resistance is to corn- 

• pletely block heat flow in to the crystall ine phase, this being 
equivalent to having a non-conducting crystalline phase. So 

13 if for the moment we assume, as in analysing the high 
temperature data, that the crystallites are spherical, then the 
limiting isotropie conductivity may be obtained from equa- 
tion (13) by setting both ke and k i t e  zero to give 

II 
Ki//ca = 2(1 - x ) / (2  + x )  (21) 

This limiting curve is shown by the dashed line in Figure 8. 
9 Since the data at the lowest temperature fall even faster with 

* X than this limiting curve, we are forced to conclude that 
~= the low temperature data are not consistent with spherical 

crystallinities. This may at first seem somewhat puzzling in 
o 7 

I.O 
5 v v 

A , 

, 0"8  

3 A 
• ' B & 

• O ~  

I 0'2 0 '4  0"6 0"8 I '0 ~' 
fc 0"4 ~ ~,~Rb==* 

I 

o o 

k 
Figure 7 The anisotropy in the thermal conductivity of drawn PE 0"2 
at room temperature against the crystalline orientation function. 
A, X = 0.74; B, X = 0.45. The theoretical curves are calculated accor- • 
ding to equation (19). Data from ref 24 • 

o d., o'.2 6.3 d.4 6.s 
by taking into account the effect of tie molecules forming x 

intercrystal l ine bridges. Since these taut tie molecules are Figure 8 The ratio K/K a for isotropic PET as functions of crystal- 
oriented along the draw direct ion they have l i t t le  effect on linity. Data at1.5K (o), 5K (o) and 10K (A) from ref 1. - -- -- -- 
K±, so our prediction of K± is valid for large draw ratios, and is calculated using equation (21) 
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view of the success of the same assumption at high tempera- IO0 
tures. However, bearing in mind that boundary resistance is \ 
expected to impede heat flow from the interlamellar amor- 
phous region to both the crystalline and the intermosaic . r-2 
regions, it is clear that the basic unit for blocking heat flow 50 
consists ot a number of mosaic blocks. This situation can 
be roughly described by assigning to the basic units an as- 
pect ratio 3' (width/thickness) much larger than one. 

For simplicity, we consider the crystalline phase as iso- ~x 
U tropic, with conductivity Kc. This is justified at low tem- 

perature because both K a  and Kc± are expected to be so ~ 20 
much greater than K a that their exact values are immaterial. ~ 
The theoretical analysis for a dilute (X ~ 0.2) dispersion 'Q 
of isotropic inclusions with boundary resistance has been o~ 
carried out a2 in the case of spheroidal inclusions, with axes ~- IO 
2a, 2a, 2b (so that 3' = a/b), the result being: ,-u 

Ki = 1 + XfJ (22) 
Ka ~ 5 

"13 
r-  

where ~ ° 
{13 

1 
/~ = ;-(2Ox + Oz) (23) • 

.5 2 

and ~ . 

rkti rti 
k -  1 - - -  1 - - - -  I 2 5 I(3 20  

1 - s i 1 - si 
~ i -  ~ i =x , z  (24) T(K) 

1 + ( k  - l)$i + rkt i  si + rti Figure 9 The boundary resistance between the amorphous and 
crystalline regions of PET as a function of temperature, fl b is ob- 

the latter form being valid for  k -Kc /Ka  >> 1 as in the pre- tained by fitting equation (22) to the experimental data 
sent case. The dimensionless parameter r is related to the, 
boundary resistance R b as: 

dicts R b o~ T-3 .  Nevertheless, the value o f R  b at 1.5K is 
r = KaRb(a2b) -1/3 within a factor of 2 of that calculated I from Little's theory. 

Another consequence of the interface boundary resistance 
and the dependence of si, ti on 3, is given in ref 32. is that, at sufficiently low temperatures, heat flow is largely 

Equation (22) predicts that, for small X, Ki /K a is linear excluded from the crystalline phase, so that the difference 
in X and this agrees with the data (Figure 8). By fitting the between K a and Kci becomes irrelevant. This leads to an 
small X portion of the data, we have obtained the slope/3 for absence of marked anisotropy at low temperatures, which is 
each temperature. Extrapolating these to T = 0 gives an indeed the feature observed 2-4. 
asymptotic value of/3 = -3.4.  This asymptotic value is im- 
portant because as T ~  0, we expect r ~ 0% so equation (24) 
further reduces to: CONCLUSION 

-1  In this paper we have formulated a simple and realistic model 
/~i - for the thermal conductivity of semicrystallIne polymers at 

1 - si high temperatures. The result has been successfully applied 
to a number of polymers (PET, PE, PP) and has reproduced 

Thus the asymptotic value of ~ depends only on the effective both the crystallinity- and orientation- dependence. Actor- 
aspect ratio 3' which is found to be 11.5. ding to this model the thermal conductivity of a bulk sample 

With 3' and thus si, ti known,  {3 at each temperature de- is insensitive to the actual conductivity of the crystallites 
pends only on the parameter r, which can therefore be de- along the chain direction (since this is so large), but the con- 
termined. It should be noted that r is X-independent, even ductivity normal to the chain direction has been extracted 
though we have used the low X data to extract its value, from the data. Its value and temperature dependence offer 
Taking 2b = 150 A to simulate a lamella thickness aa of some clues as to the phonon-scattering mechanism in the 
about 100 A, and using the known Ka, we have calculated crystalline phase of each polymer. 
R b for each temperature and plotted the results in Figure 9. A recently proposed model for composite materials, 
We see that below about 6K R b varies approximately as T -2 which takes into account the boundary resistance between 
(this being independent of the value taken for b), a behaviour the two phases in a material, has been applied to the low 
in agreement with that for other interfaces which have been temperature data for PET. The extreme simplicity of the 
directly measured ~,as. It is to be noted that this tempera- theory in the low temperature limit allows a simple deter- 
ture dependence disagrees with Little's theory ~, which pre- mination of the effective shape of the crystalline units res- 
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ponsible for obstructing heat  flow. The T - 2  behaviour of  12 Takayanagi, M. and Kajiyama, T. J. Macromol. Sci. (B) 1973, 
8, 1 

the boundary resistance found here, though in agreement 13 Maxwell, J. C. 'A Treatise on Electricity and Magnetism', 
with other experimental work, is inconsistent with Litfle's Clarendon Press, Oxford, 1892, Vol. 1, p 435 
t h e o ~ ,  which predicts a T - 3  dependence. A further under- 14 Rayleigh, Lord. Phil. Mag. 1892, 34,481 
standing of  this discrepancy may shed some light on the 15 Meredith, R. E. and Tobias, C. W. J. Appl. Phys. 1960, 31, 
mechanism of  phonon scattering at the boundary between 1270 

16 Jeffrey, D. J. Prec. R. Soc. London (A) 1973, 335, 395 
two phases. 17 Eiermann, K. Kolloid.Z.Z. Polym. 1964, 201, 3 

18 Ziman, J. M: 'Electrons and Phonons' Oxford University Press, 
London 1960 
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